Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose

Por um escritor misterioso
Last updated 24 março 2025
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Single-molecule study of oxidative enzymatic deconstruction of cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Substrate-Dependent Cellulose Saccharification Efficiency and LPMO Activity of Cellic CTec2 and a Cellulolytic Secretome from Thermoascus aurantiacus and the Impact of H2O2-Producing Glucose Oxidase
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Oxidative modification of cellulosic fibres by lytic polysaccharide monooxygenase AA9A from Trichoderma reesei
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Biomolecules, Free Full-Text
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
A sensitive, accurate, and high-throughput gluco-oligosaccharide oxidase-based HRP colorimetric method for assaying lytic polysaccharide monooxygenase activity, Biotechnology for Biofuels and Bioproducts
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Deciphering the efficient cellulose degradation by the thermophilic fungus Myceliophthora thermophila focused on the synergistic action of glycoside hydrolases and lytic polysaccharide monooxygenases - ScienceDirect
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Biochemical, structural insights of newly isolated AA16 family of Lytic Polysaccharide Monooxygenase (LPMO) from Aspergillus fumigatus and investigation of its synergistic effect using biomass
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
PDF) Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Current understanding of substrate specificity and regioselectivity of LPMOs, Bioresources and Bioprocessing
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Assessing the enzymatic effects of cellulases and LPMO in improving mechanical fibrillation of cotton linters, Biotechnology for Biofuels and Bioproducts
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Recent advances in the efficient degradation of lignocellulosic metabolic networks by lytic polysaccharide monooxygenase
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
Light Boosts the Activity of Novel LPMO from Aspergillus fumigatus Leading to Oxidative Cleavage of Cellulose and Hemicellulose
Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization  of Cellulose
The “life-span” of lytic polysaccharide monooxygenases (LPMOs) correlates to the number of turnovers in the reductant peroxidase reaction - Journal of Biological Chemistry

© 2014-2025 praharacademy.in. All rights reserved.